重构,精简相关代码,更新ddddocr
This commit is contained in:
parent
c82d11ff4b
commit
610a6cd329
@ -1,29 +1,21 @@
|
|||||||
import json
|
import json
|
||||||
import re
|
import re
|
||||||
import time
|
import time
|
||||||
import traceback
|
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
from utility import encrypt, cap_recognize
|
from utility import encrypt, cap_recognize
|
||||||
|
def study(username,password):
|
||||||
|
# 返回1:成功
|
||||||
def study(username, password, ua):
|
# 返回0:失败
|
||||||
# return 1:success;0:fail
|
|
||||||
url = ''
|
|
||||||
tryTime = 0
|
tryTime = 0
|
||||||
|
url = ''
|
||||||
while tryTime < 4:
|
while tryTime < 4:
|
||||||
try:
|
try:
|
||||||
bjySession = requests.session()
|
bjySession = requests.session() # 创建会话
|
||||||
bjySession.timeout = 5 # set session timeout
|
bjySession.timeout = 5 # 设置会话超时
|
||||||
bjySession.headers.update({"User-Agent": ua, })
|
bjySession.headers.update({"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36', })
|
||||||
touch = bjySession.get(url="https://m.bjyouth.net/site/login")
|
touch = bjySession.get(url="https://m.bjyouth.net/site/login")
|
||||||
capUrl = "https://m.bjyouth.net" + re.findall(
|
capUrl = "https://m.bjyouth.net" + re.findall(r'src="(/site/captcha.+)" alt=', touch.text)[0]
|
||||||
r'src="(/site/captcha.+)" alt=', touch.text)[0]
|
|
||||||
if "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQD5uIDebA2qU746e/NVPiQSBA0Q" not in touch.text:
|
|
||||||
print("记录的公钥没有出现")
|
|
||||||
capText = cap_recognize(bjySession.get(url=capUrl).content)
|
capText = cap_recognize(bjySession.get(url=capUrl).content)
|
||||||
# print(f'验证码识别: {capText}')
|
|
||||||
login_r = bjySession.post('https://m.bjyouth.net/site/login',
|
login_r = bjySession.post('https://m.bjyouth.net/site/login',
|
||||||
data={
|
data={
|
||||||
'_csrf_mobile': bjySession.cookies.get_dict()['_csrf_mobile'],
|
'_csrf_mobile': bjySession.cookies.get_dict()['_csrf_mobile'],
|
||||||
@ -31,7 +23,6 @@ def study(username, password, ua):
|
|||||||
'Login[username]': encrypt(username),
|
'Login[username]': encrypt(username),
|
||||||
'Login[verifyCode]': capText
|
'Login[verifyCode]': capText
|
||||||
})
|
})
|
||||||
|
|
||||||
if login_r.text == '8':
|
if login_r.text == '8':
|
||||||
print('Login:识别的验证码错误')
|
print('Login:识别的验证码错误')
|
||||||
continue
|
continue
|
||||||
@ -40,9 +31,9 @@ def study(username, password, ua):
|
|||||||
raise Exception('Login:账号密码错误')
|
raise Exception('Login:账号密码错误')
|
||||||
print('登录成功')
|
print('登录成功')
|
||||||
r = json.loads(bjySession.get("https://m.bjyouth.net/dxx/course").text)
|
r = json.loads(bjySession.get("https://m.bjyouth.net/dxx/course").text)
|
||||||
# "rize" LOL
|
|
||||||
if 'newCourse' not in r:
|
if 'newCourse' not in r:
|
||||||
print(r)
|
print(r)
|
||||||
|
# newCourse滞后于course中的课程,所以这里用course中的最新课程
|
||||||
url = r['data']['data'][0]['url']
|
url = r['data']['data'][0]['url']
|
||||||
title = r['data']['data'][0]['title']
|
title = r['data']['data'][0]['title']
|
||||||
courseId = r['data']['data'][0]['id']
|
courseId = r['data']['data'][0]['id']
|
||||||
@ -50,51 +41,38 @@ def study(username, password, ua):
|
|||||||
except:
|
except:
|
||||||
time.sleep(3)
|
time.sleep(3)
|
||||||
tryTime += 1
|
tryTime += 1
|
||||||
print(traceback.format_exc())
|
|
||||||
|
|
||||||
if not url:
|
if not url:
|
||||||
print('登入失败,退出')
|
print('登入失败,退出')
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
orgIdTemp = ''
|
info = bjySession.get('https://m.bjyouth.net/dxx/my').json()['data']
|
||||||
orgPattern = re.compile(r'\(|(\s*(\d+)\s*)|\)') # 组织id应该是被括号包的
|
name = info['name'].split('(')[0]
|
||||||
learnedInfo = 'https://m.bjyouth.net/dxx/my-study?page=1&limit=15&year=' + time.strftime("%Y", time.localtime())
|
org = info['org'].split('(')[0]
|
||||||
haveLearned = bjySession.get(learnedInfo).json()
|
print(f'当前用户: {name} {org}')
|
||||||
|
|
||||||
orgID = ""
|
|
||||||
try:
|
|
||||||
orgIdTemp = orgPattern.search(haveLearned['data'][0]['orgname'])
|
|
||||||
orgID = orgIdTemp.group(1)
|
|
||||||
except:
|
|
||||||
print('获取组织id-2')
|
|
||||||
orgIdTemp = orgPattern.search(bjySession.get('https://m.bjyouth.net/dxx/my').json()['data']['org'])
|
|
||||||
if orgIdTemp:
|
|
||||||
orgID = orgIdTemp.group(1)
|
|
||||||
|
|
||||||
if not orgID:
|
|
||||||
orgID = '172442'
|
|
||||||
print(f"无法获取orgID")
|
|
||||||
|
|
||||||
nOrgID = int(bjySession.get('https://m.bjyouth.net/dxx/is-league').text)
|
nOrgID = int(bjySession.get('https://m.bjyouth.net/dxx/is-league').text)
|
||||||
|
|
||||||
|
learnedInfo = 'https://m.bjyouth.net/dxx/my-study?page=1&limit=15&year=' + time.strftime("%Y", time.localtime())
|
||||||
|
haveLearned = bjySession.get(learnedInfo).json()
|
||||||
|
|
||||||
if f"学习课程:《{title}》" in list(map(lambda x: x['text'], haveLearned['data'])):
|
if f"学习课程:《{title}》" in list(map(lambda x: x['text'], haveLearned['data'])):
|
||||||
print(f'{title} 在运行前已完成,退出')
|
print(f'{title} 在运行前已完成,退出')
|
||||||
return 1
|
return 1
|
||||||
study_url = f"https://m.bjyouth.net/dxx/check"
|
study_url = f"https://m.bjyouth.net/dxx/check"
|
||||||
r = bjySession.post(study_url, json={"id": str(courseId), "org_id": int(nOrgID)}) # payload
|
r = bjySession.post(study_url, json={"id": str(courseId), "org_id": int(nOrgID)}) # payload
|
||||||
|
|
||||||
if r.text:
|
if r.text:
|
||||||
print(f'Unexpected response: {r.text}')
|
print(f'开始学习{title}')
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
|
|
||||||
haveLearned = bjySession.get(learnedInfo).json()
|
haveLearned = bjySession.get(learnedInfo).json()
|
||||||
|
|
||||||
if int(orgID) != nOrgID:
|
|
||||||
raise Exception('组织id不匹配,如果看到这个请开个issue说下')
|
|
||||||
|
|
||||||
if f"学习课程:《{title}》" in list(map(lambda x: x['text'], haveLearned['data'])):
|
if f"学习课程:《{title}》" in list(map(lambda x: x['text'], haveLearned['data'])):
|
||||||
print(f'{title} 成功完成学习')
|
print(f'{title} 成功完成学习')
|
||||||
return 1
|
return 1
|
||||||
else:
|
else:
|
||||||
print(f'完成{title}, 但未在检查中确认')
|
print(f'完成{title}, 但未在已学习列表中找到, 请手动检查')
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
study('16634486740','Anye20031003')
|
113
ddddocr.py
113
ddddocr.py
@ -5,11 +5,14 @@ warnings.filterwarnings('ignore')
|
|||||||
import io
|
import io
|
||||||
import os
|
import os
|
||||||
import base64
|
import base64
|
||||||
|
import json
|
||||||
|
import pathlib
|
||||||
import onnxruntime
|
import onnxruntime
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def base64_to_image(img_base64):
|
def base64_to_image(img_base64):
|
||||||
img_data = base64.b64decode(img_base64)
|
img_data = base64.b64decode(img_base64)
|
||||||
return Image.open(io.BytesIO(img_data))
|
return Image.open(io.BytesIO(img_data))
|
||||||
@ -21,24 +24,37 @@ def get_img_base64(single_image_path):
|
|||||||
return img_base64.decode()
|
return img_base64.decode()
|
||||||
|
|
||||||
|
|
||||||
|
class TypeError(Exception):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
class DdddOcr(object):
|
class DdddOcr(object):
|
||||||
def __init__(self, use_gpu: bool = False, device_id: int = 0):
|
def __init__(self, ocr: bool = True, det: bool = False, use_gpu: bool = False,
|
||||||
|
device_id: int = 0, import_onnx_path: str = "", charsets_path: str = ""):
|
||||||
|
if not hasattr(Image, 'ANTIALIAS'):
|
||||||
|
setattr(Image, 'ANTIALIAS', Image.LANCZOS)
|
||||||
|
self.use_import_onnx = False
|
||||||
|
self.__word = False
|
||||||
|
self.__resize = []
|
||||||
|
self.__channel = 1
|
||||||
|
if import_onnx_path != "":
|
||||||
|
det = False
|
||||||
|
ocr = False
|
||||||
|
self.__graph_path = import_onnx_path
|
||||||
|
with open(charsets_path, 'r', encoding="utf-8") as f:
|
||||||
|
info = json.loads(f.read())
|
||||||
|
self.__charset = info['charset']
|
||||||
|
self.__word = info['word']
|
||||||
|
self.__resize = info['image']
|
||||||
|
self.__channel = info['channel']
|
||||||
|
self.use_import_onnx = True
|
||||||
|
|
||||||
|
if det:
|
||||||
|
ocr = False
|
||||||
|
self.__graph_path = os.path.join(os.path.dirname(__file__), 'common_det.onnx')
|
||||||
|
self.__charset = []
|
||||||
|
if ocr:
|
||||||
self.__graph_path = os.path.join(os.path.dirname(__file__), 'common.onnx')
|
self.__graph_path = os.path.join(os.path.dirname(__file__), 'common.onnx')
|
||||||
if use_gpu:
|
|
||||||
self.__providers = [
|
|
||||||
('CUDAExecutionProvider', {
|
|
||||||
'device_id': device_id,
|
|
||||||
'arena_extend_strategy': 'kNextPowerOfTwo',
|
|
||||||
'cuda_mem_limit': 2 * 1024 * 1024 * 1024,
|
|
||||||
'cudnn_conv_algo_search': 'EXHAUSTIVE',
|
|
||||||
'do_copy_in_default_stream': True,
|
|
||||||
}),
|
|
||||||
]
|
|
||||||
else:
|
|
||||||
self.__providers = [
|
|
||||||
'CPUExecutionProvider',
|
|
||||||
]
|
|
||||||
self.__ort_session = onnxruntime.InferenceSession(self.__graph_path, providers=self.__providers)
|
|
||||||
self.__charset = ["", "笤", "谴", "膀", "荔", "佰", "电", "臁", "矍", "同", "奇", "芄", "吠", "6",
|
self.__charset = ["", "笤", "谴", "膀", "荔", "佰", "电", "臁", "矍", "同", "奇", "芄", "吠", "6",
|
||||||
"曛", "荇", "砥", "蹅", "晃", "厄", "殣", "c", "辱", "钋", "杻", "價", "眙", "鴿", "⒄", "裙",
|
"曛", "荇", "砥", "蹅", "晃", "厄", "殣", "c", "辱", "钋", "杻", "價", "眙", "鴿", "⒄", "裙",
|
||||||
"训", "涛", "酉", "挞", "忙", "怍", "︰", "镍", "檐", "眯", "茓", "辖", "淩", "啟", "蜀", "芟",
|
"训", "涛", "酉", "挞", "忙", "怍", "︰", "镍", "檐", "眯", "茓", "辖", "淩", "啟", "蜀", "芟",
|
||||||
@ -553,20 +569,71 @@ class DdddOcr(object):
|
|||||||
"够", "璧", "晡", "擘", "毂", "御", "葚", "忱", "觞", "瑁", "唇", "罡", "剽", "殡", "沛", "帻",
|
"够", "璧", "晡", "擘", "毂", "御", "葚", "忱", "觞", "瑁", "唇", "罡", "剽", "殡", "沛", "帻",
|
||||||
"举", "瞓", "谬", "溝", "言", "哽", "婿", "猿", "跗", "獴", "俜", "呙", "弗", "凿", "窭", "铌",
|
"举", "瞓", "谬", "溝", "言", "哽", "婿", "猿", "跗", "獴", "俜", "呙", "弗", "凿", "窭", "铌",
|
||||||
"友", "唉", "怫", "荘"]
|
"友", "唉", "怫", "荘"]
|
||||||
|
self.det = det
|
||||||
def classification(self, img_bytes: bytes = None, img_base64: str = None):
|
if use_gpu:
|
||||||
if img_bytes:
|
self.__providers = [
|
||||||
image = Image.open(io.BytesIO(img_bytes))
|
('CUDAExecutionProvider', {
|
||||||
|
'device_id': device_id,
|
||||||
|
'arena_extend_strategy': 'kNextPowerOfTwo',
|
||||||
|
'cuda_mem_limit': 2 * 1024 * 1024 * 1024,
|
||||||
|
'cudnn_conv_algo_search': 'EXHAUSTIVE',
|
||||||
|
'do_copy_in_default_stream': True,
|
||||||
|
}),
|
||||||
|
]
|
||||||
else:
|
else:
|
||||||
image = base64_to_image(img_base64)
|
self.__providers = [
|
||||||
image = image.resize((int(image.size[0] * (64 / image.size[1])), 64), Image.LANCZOS).convert('L')
|
'CPUExecutionProvider',
|
||||||
|
]
|
||||||
|
if ocr or det or self.use_import_onnx:
|
||||||
|
self.__ort_session = onnxruntime.InferenceSession(self.__graph_path, providers=self.__providers)
|
||||||
|
|
||||||
|
def classification(self, img):
|
||||||
|
if not isinstance(img, (bytes, str, pathlib.PurePath, Image.Image)):
|
||||||
|
raise TypeError("未知图片类型")
|
||||||
|
if isinstance(img, bytes):
|
||||||
|
image = Image.open(io.BytesIO(img))
|
||||||
|
elif isinstance(img, Image.Image):
|
||||||
|
image = img.copy()
|
||||||
|
elif isinstance(img, str):
|
||||||
|
image = base64_to_image(img)
|
||||||
|
else:
|
||||||
|
assert isinstance(img, pathlib.PurePath)
|
||||||
|
image = Image.open(img)
|
||||||
|
if not self.use_import_onnx:
|
||||||
|
image = image.resize((int(image.size[0] * (64 / image.size[1])), 64), Image.ANTIALIAS).convert('L')
|
||||||
|
else:
|
||||||
|
if self.__resize[0] == -1:
|
||||||
|
if self.__word:
|
||||||
|
image = image.resize((self.__resize[1], self.__resize[1]), Image.ANTIALIAS)
|
||||||
|
else:
|
||||||
|
image = image.resize((int(image.size[0] * (self.__resize[1] / image.size[1])), self.__resize[1]), Image.ANTIALIAS)
|
||||||
|
else:
|
||||||
|
image = image.resize((self.__resize[0], self.__resize[1]), Image.ANTIALIAS)
|
||||||
|
if self.__channel == 1:
|
||||||
|
image = image.convert('L')
|
||||||
|
else:
|
||||||
|
image = image.convert('RGB')
|
||||||
image = np.array(image).astype(np.float32)
|
image = np.array(image).astype(np.float32)
|
||||||
image = np.expand_dims(image, axis=0) / 255.
|
image = np.expand_dims(image, axis=0) / 255.
|
||||||
|
if not self.use_import_onnx:
|
||||||
image = (image - 0.5) / 0.5
|
image = (image - 0.5) / 0.5
|
||||||
ort_inputs = {'input1': np.array([image])}
|
else:
|
||||||
|
if self.__channel == 1:
|
||||||
|
image = (image - 0.456) / 0.224
|
||||||
|
else:
|
||||||
|
image = (image - np.array([0.485, 0.456, 0.406])) / np.array([0.229, 0.224, 0.225])
|
||||||
|
image = image[0]
|
||||||
|
image = image.transpose((2, 0, 1))
|
||||||
|
|
||||||
|
ort_inputs = {'input1': np.array([image]).astype(np.float32)}
|
||||||
ort_outs = self.__ort_session.run(None, ort_inputs)
|
ort_outs = self.__ort_session.run(None, ort_inputs)
|
||||||
result = []
|
result = []
|
||||||
|
|
||||||
last_item = 0
|
last_item = 0
|
||||||
|
if self.__word:
|
||||||
|
for item in ort_outs[1]:
|
||||||
|
result.append(self.__charset[item])
|
||||||
|
else:
|
||||||
for item in ort_outs[0][0]:
|
for item in ort_outs[0][0]:
|
||||||
if item == last_item:
|
if item == last_item:
|
||||||
continue
|
continue
|
||||||
|
24
main.py
24
main.py
@ -1,24 +0,0 @@
|
|||||||
import os
|
|
||||||
import time
|
|
||||||
import sys
|
|
||||||
from study import study
|
|
||||||
|
|
||||||
ua = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
|
|
||||||
|
|
||||||
accounts=[('*********', '*********')]
|
|
||||||
print(f'账号数量:{len(accounts)}')
|
|
||||||
successful = 0
|
|
||||||
count = 0
|
|
||||||
for username, password in accounts:
|
|
||||||
if username=='********':
|
|
||||||
continue
|
|
||||||
count += 1
|
|
||||||
print(f'--User {count}--')
|
|
||||||
if study(username, password, ua):
|
|
||||||
successful += 1
|
|
||||||
|
|
||||||
failed = count - successful
|
|
||||||
print('--Summary--')
|
|
||||||
print(f'成功:{successful},失败:{failed}')
|
|
||||||
if failed != 0:
|
|
||||||
raise Exception(f'有{failed}个失败!')
|
|
Loading…
x
Reference in New Issue
Block a user